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SUMMARY

A previous report gave calculations for the pressux”edistri-
bution over thin oblique airfoils at supersonic speed.. The present
report extends the calculations.to subsonic speeds.

Xt is foumd that the flows again c,anbe obtained by tie supeh-
posltion of elementary conical flow fields. In the case of the

● mept+ack wing the pressure distributions remain qualitatively
similex at subsonic and supersonic speeds. This a distribution
Sim!laznto the Ackeret type of distribution appears on tie root

● sections of the swepWmck wing at M = O. The resulting positive
pressure drag on the root
outboard sections.

section is balanced by negative drags on

131TRODUCTION

So far as is known, attempts to extend airfoil pressm~e-
distribution calculations to three-dimensional flow have been
confined to cases of thin lifting su@aces. It has generally been
assumed that the ccmponent of the pressure distribution ~rising from
the thickness of the airfoil will be but little affected by the
finite span, or aspect ratio, of the wing. This supposition is “
borne out by iiheknown incompressible-flow solutions for flat
e~~psofds . ~~ese solutions ~ho~ tit me ~s~ v~i~t~ons of
aspect ratio produce small effects.

Compressible-flow theory shows however that the effects of
plan form become more pronounced at higher speeds. The theory
indicates a pro~ssive reduction of the equivalent aspect ratio as
the Mach number approaches 1.0. Hence at these speeds the three-
dime~sional character of the 3?lowcan no longer be neglected. Of
particular interest tie the deviations from two-dimensional flow near
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the root sections of a sweptiack wing, since the adverse effects
canpressi%ilitymay arise first in this region.

of

In the present reportrthree-d~nsional flows are obtained from
a distribution of ‘rpress~ sourcesifin the chord plane of the airfoil..
The shapes thus obtaflnedme s-trical airfoils at zero lift.
The calculations are simpltiied by considering airfoils cumposed of
conical or cylindrical suzzfaces In these cases the sources can be
arranged into lines of uniform strength following the generators of
the surface. The relation between ihe strengths of the line scnu?ces
and the shape of the airfoil -isthe same as in reference 1, that is,
each line source produces a deflection of the streamlines croseing
over the source. The pressure field of the Ilne source again can be
represented by systems of strai@t rays of equal pressure (isobars)
radiating from the ends of the line source.

In general, the present development follows closely that of
reference 1 and the reader should consult that report for addi-
tional details of the method. The solutions are given explicitly
for M. O but are extended to other Mach numbers by the WB1l-known
Prandtl transfomat:on.

THZ OBLIQUE LINE SOURCE

.

.

It Is well known that an tndivldual velocity ccmponenbof a
yotential.flow will satisfy the same differential equation as the
potential. In the approximations of the thin-airfoil theory the
presswe depends only on the individual component u, that is,

(1)

while the slope of the sti.’acedepends only on the individual
component w, that is

(2)

(See appendix for symbols.) Hence in the ~in-airfoil theory it fs
oftan more convenient to deal directly with the velocities u and I
w as solutions of Laplace~s equation than to derive .Ltesqc.~ponents * I
from a.veloci.typotentie.l q.

1,

I
Since u is proportional to the pressure, a solution of Laplaoets ,,

I
i

I
I

r
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equation can represent directly
the term “pressure potential.”
solution

‘=+=*

tie pressure dlstributfon, hence
Inthis terminology, the fundamental

(3)

represents a -point source of pressure rather than a point
source of flui~.

To get the effect of a row of sources, or a line source, along
the x-axis between the points a ad. b it 3s necessary to
equation (3):

u =~b-,. Bin.-l*- SH-l *.

integrate

(4)

The pressure field of the finite line source thus consists of the
sum of two conical pressure fields radiating from the ends of the
line source. (See fig. 1.) 333the supersonic case (reference 1)
the radial isobars forming the conical field were confined to the
downstream Mach cone. Eere however the isobars extend over the
whole space.~

TJ -&e direction of fl~@t iS along tie axis of’We SOUZ’W

(x-axis),tie flow will satisfy the boundary condition for a bdy
of revolution. However, if the line source is turned out to a
position oblique to the stream, the boundsry shape till be distorted
and, if the angle of obliquity is Iar@ enough to place the line
souzzcewell outside the dismeter of the original body, the figure

%he conical pressure field for either the subsonic or the supex
sonic line source may be obtained directly from the general SOIU+
tions of LapLacefs equations of zero degree in X,Y,Z given by
W.F. Donkin. (See reference 2, page 357’.) The general solution is

f (’ *IZ
u=

X+J x%y*+z2 )
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will be an oblique wedge. The nose angle of the wedge is
where the streamlines of the main flow cross the line source.

At supersonic speeds the expression for the oblique line source
was obtained by applying an equivalent of the Lorentz transformation
for which the wave equation Is invwiant. The equivalent trans-
fomattou for Laplacels equation is a rotation of the axes, given~

Xtxx+my

yf. y-m,x

where m is the slope of the new axes relative to the old. (Note
that a change of scale is admitted for convenience.) The geometry
of the pressure field relative to the line source is not altered in
SXIyway by this rotation and the isobars behave as though they were
rigidly attached to the ends of the source. For a line source with
one end at the origin we have

X1
u= sInh-1

Jo=+=

This field is illustrated in figure 2 for the
- ~the x- and y-axes interchange and there

u= Si.nh-~ ~
d=

for a line source d.ong y.

plane

(5)

z=O.Aa
is obtained

(6)

See footnote 1, pg. 3.

The solution corresponding to the subsonic line source is

Uu
““p” ‘O’ * = ‘in’-’*

while the field for the supersonic source is given by

u= -R.P. 10~
yi-iz =

x+J~= Co”h-’ &

r
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The vertical.velocity w near z = C%, which determines the
shape of the boundary, mey be found by integrating u with respect
to x and then clifferentlating the resulting velocity potantial
with respect to z

5

(7)

Evaluation of this lntegre3 fok
ends of a line source gives .

w= i%

the overlapping fields frm- %- -

ALEz
m (8)

over the area of the x, y pla& behind the line ‘source.

The figure formed by the streamlines crossing a line source is
thus a wedge-shaped body ha.vhg sn bblique leading edge and extendifig
indefinitely downstzzeam. Zt is evident frmn equatton (3) that the
infinitely wide wedge cannot be treated in subsonic flow, since it
creates am infinite pressure disturbance at all points.

The slope of the wedge surface may from tbe chord plane is
given by ,.

(9)

With thfs relation and equat~on (8) the pressure coefficient neqr
the plane z = O may be expre~sed in terms of the slope

where 1y’~ indicates

sinh- ,Xla&ifi-1
. . . . .

the absolute megnitude

(10)

of yf. Following the
thin-ai~oil theory, the pressure over the chord plane (z—>0) is
taken as the prbsOtie over the actual Woil’ surface.

.. . . . . .. . .. . . . . —
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It was seen that-the effect of a line ieourcein tie pressure
field is to cause a deflection of the streamlines crossing the source.
The deflection thus produced is equal and oppositi at points above
and-below tlm chord planqsothattie source spreads the streamlines
apart. H the source is followed by a sink of equal strength, an
equal.opposite deflection of the streamlines will occur as thy
cross over the sink. The figure fornmd by the streamlines near the
plane z = O will thus be a plate of uniform tiickness with a
beveled leading f3dge.z (See fig. 3)

The pressure distribution over s;ch a beveled edge may be
obtainod very simply by superimposing the pressures laid off on
radial isobars originating from the four corners of the bevel.
Figure 3 illustrates this process for a bevel having a square plan
fOrm. Only isobars fram one tip cwe shown because of the symmolxY
of the figure.

h figure 3 the llne sourco and the line sink are parallel to
tho y-axis, hence

It cmn be coma that if tho aspect ratio of the figure is increased
to a largo value tho ends of the line sources will be sep=ated by
a great distance and tho isobars in intermediate regions will
approach parallel straight lines, hence the flow field appmache 3
a cylindrical or twtiimensicnal form. At the same time the
arguments y&l/Ix*1 I in equation (11) become ykq/x~ and q
tabs on very lexge values so that

2Accordf~g to me ~iHirfoil _&eory the thickness Of the figUl?C!

ends abruptly at the ends of the source lines. A more exact
considerationwould be expected to show some roundi~ at the tips
of the wedge as indicated in figure 3.

r



and equation (11) is found to approach the Iagendre function Qo~
that is

IIu.210g=&.-4~(x) (12)

(S00 reference 3, pg. 110.)

~is e~ression when combined with equation (8) agrees wtth the tw-
riimensionalpotential function for the wedge, that is,

(13)

(See fig. 4.)

me ~~ob~~ at ~i@t Qos ~ ~~ ~f~ ~ *O line so~ce are
lines of zero pressure, hence the rays originating at tie tip of a
rectangular?wing contribute nothing to the pressure distribution at
this tip. The whole pressure distribution at one tip is thus obtained
by considering only thoso isobars radiating frcm the opposite tip.
It is evident that h the case of a long narrow rectangular wing
the pressures at either tip will ?30approximately one~ti the
pressures over the middle portion of the wing.

h case the ting is oblique the tip sections will no longer
be at right angles to the axes of the source lines and the rays
originating frcm the adJacent ends of the source lines ti~ cOntrl-
buta to the pressure over the tip. It can be shown that this canpo-
nent of the tip pressure distribution is similar in fomn to the
Ackeret t~e of distribution, that is, the pressure at any point
of the surface is proportional to the slope of the surface at that
point.

Consider first tie sloping surface formed by a pair of oblique
source-sink lines. The tlp section lies along the lines of constant
pressuro of magnitude proportional to Sinh-l l/m. Between the
source and sink the pressures are additive, so that

Ahead of or behind.this section the pressures cancel.
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Zn case of a curved airfoil surface the chord can be divided
into elements composed of sourc~ink pairs the strengths of which
are proportional to the slope of the surface at the point in question.
Each pair then contributes a yresswe proportional to the local slope
and contributes no pressure at other points. Hence, equation (14)
applies when dz/dx is variable along the chord.

The foregoing arguments of cuurse apply only at the tip
section of the oblique wing. At sane distance from the tfz section
the overlapping isobars radiating from the tip again produce a
quaei-cylindricalpressure field as in the case of the rectangulez
wing . !I%UEIthe resultant pressure distribution at either tip of a
long oblique wing consiets of two components, one given by equation
(14) and of the Ackerat type while the other component is equal to
one~al.f the normal ttiimensional pressure distribution associated
with the airfoil section.

F@ure 5 shows the pressures over a beveled-edge profile
having 47 sweepback. The pressure distribution over the root
section is given by

.

?=: * %[QO(XYW’-’:PO(I’I
at a great distance from either root or tip by

(15)

(16)

and at the tip by

~=~ m
9 X &~

To take account

dz
G [

Q. (d + Sir.h-z #’o (X) 1 (17)

of the effect of compressibilitywe make use
of the Prandtl transformation, increasing both the x dimensions

1
and the pressure coefficients by the factor -. Replacing m

by @i cot A, where A is the angle of sweepback, equation
(16) reduces to

r I
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4
P/2(v COSA)2

Thus at a great

9

.2 1 dz
Qo (d (18)

Yf &(M COSfi)2 d(x c~sii)

distance
a v~iation indicated by

At the root section
of pressure distribution

from either root or tip the pressures follow
we ?lOrmal.ccmponentof velocity V COSA.

a caapcnent representing the Ackeret type
is ~ded to squa.tion(18). ~is ccmponent

d
d(x c:sA)

Blnh-=
@&A ‘0 ‘x)

(19)

The factor si~l ~
~~5COB A

shows a logarithmic infinity at

M = 1.0. Hence the pressure on the rmt section increases more
rqidly with Mach number than do the pressures at other soctlone
of the swep~ack wing. Fur&emnore, the shape of &o pressure
distribution over the root section approaches the Ackeret shape
more closely as the Mach number approaches 1.0. As shown in
reference 1 the pressure distribution on the root section is exactly
this shape at suparscnic speeds, that is,

,~ ~cosh-~-jpo (x)
1--(MCOS A)2 d(x COE A)

(20)

Since sinha +cosh–l for large values of the argument, the
sweptiack airfoil shows no discontinuity in the type of pressure
distribution on passing through the speed of sound. It will be
evident that stiilar reasoning csn be appllod to the tip sections.

AIRFOiZ OF BICONK!ZXSECTION

The use of a finite number of sources and sinks results in
tirfoil sections cmposed of straight segments. Such sections are
undesirable, since they show Infinite pressure peeks at the bends
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in the surface. Surfaces having continuous curvature require
continuous distribution of sources and &inks slined with the generators
of tho surface. The simplest of theee is the blconvex profile in
which the upper and lower surfaces are parabolic ace and have
constant curvature. Such a.profile requires lirm sources of’finite
strength to form the desired angles of intersection of the arcs at
tho loading ~d.trailing edges together with a uniform distribution
of sinks along the chord pl~e between the two sources.

Tho pmssuro field for a.uniform sheet of lino sources is
obtained by integrathg ,thofield of a single line sou.mo In the x
direction. This integral is

The integration for a source sheet is actually somowhat simpler if
the fntarforence of a bilaterally symmetrical arrangement of sources
is considered simultanaously. The influence of the synmmtrical, or
con$ugate, arrangement is obbinod by sulstituting -m for m in
equation (21). Donothg x-y by ~ and y+mx by Yr we have

(22)

To obtain a complote sweptiack wing it is necessary to add
a number of component pressure fields ~ oxplainod in referonco 1.
For an infinite swept-back wing with leading and trailing edges at
Y’ “w and -m, rewpectivoly, on ono side, and at ~’ = i-m
and -, respectively, on the other side, there Is obtained

()~+2Q1m +2Q1

(’i*-’*- ‘“-’ l-%)
r+)- Sinh-= ‘f+

y +m
.

(23) .
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where ($ is the thickness-ohoid ratio of the biconvex profile.
.max

()The terms Q. ~ represent the pressure distribution on the

biconvex ai~o 1 n two-dimensional flow. The appearance of these “
terms 1s the result of the assumption that the tips are remOvG& to
a great dista.nco.

At the root section (y = 0) equation (23) reduces to

(24)

Figure 6 shows pressure distributions at various stations along
the span for a biconvex wing with 600swmpback. The curves aasum8
the tw=imensional fo?m at a relatively short distance (Y~*c)
from the root section, and similar behavior 5s to be expected near
‘We tips. Hence tie assumption.of infinite aspect ratio should
apply very nearly at any section situated more than one-half chord
length from eitlmr root or tip.

Fi@re T ShOWS the effect of Mach nmnber on the pressures
over the root section and illustrates the progressive change tO the
supersonic type as the Mach number approaches 1.0. It can be seen
that an increase in Mach number will not only increase the disto-
tion of the pressure distrilmtion but will increase the extent of
the distortion along W span. —.

An interesting point to be noted is that not all sections of
the swep=ack wtn$ have zero pressure dxag. A positive drag appears
on the root sections aud a negative drag on the tip sections. Hence
the spanwise &m.g &i.stributionis qualitatively similar to that at
supersonic speeds though, of course, the net subsonic pressure drag
is zero.

Amus Aoroneutical ~bo=to~,
National.Advisory Conmittee

Moffett Field, Celif.,
for Aeronautics,
May 1947. -,
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APPENDIX

Symbole

flight velocity

Mach number

coordinates

point on x-axis

point on y-axis

dieturbmzce, velocity potontial

dtsturba.ncevelocity cmponenta

Iocsl proasuro

@namic pressure (~pV~)

air density

Logondro functions

differentls2 operator (d/dx)

thickness of wing

chord of wing (mcm.curedalong x)

slopf3of line f30urce(absoluti value)

x+my

Y -mx

x- my

y+mx

Real peM
●

✎

r
,.
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